China's Fuel Cell Vehicles Technology Roadmap¹

Source: 1. China Automotive Engineering Institute, < Energy Saving and New Energy Vehicle Technology Roadmap>, Oct. 2016

© 2016 PIM Ltd. All rights reserved. This report is solely for the use of client personnel. No part of it may be circulated, quoted, or reproduced for distribution outside the client organization without prior written approval from PIM Ltd.

Fuel Cell Vehicles _Overall Goals

Management Advisory

Fuel Cell Vehicles _ Development Targets, Technology Routes and Priorities

Development Targets	Technology Routes	Development Priorities
It is supposed that fuel cell vehicles will develop From demostration run to large scale applications gradually in 2020 to 2030Scale of Fuel Cell Vehicles 	 Key Material Technology of Fuel Cell Fuel Cell Pack Technology System Integration and Control Dynamic System Development Design and Integration of Fuel Cell Vehicles Improving Power Density Improving Durability Lowering Cost Improving Safety for Hydrogen Loaded 	 ✓ New core materials for fuel cell ✓ Advance fuel cell pack ✓ Key technology for auxiliary system parts ✓ High-performance of fuel cell system ✓ Hybrid fuel cell power system ✓ Basic facilities for making hydrogen , carrying hydrogen, storing hydrogen and adding hydrogen

Fuel Cell Vehicles_ Overall Technology Routes

Overall Technology Route

Overall Technology Roule						
		2020	2025	2030		
Overall Targets		Demonstration run scale of 5,000 units fuel cell vehicles for public service in certain areas	50,000 units fuel cell vehicles for private and public service	Commercial promotion up to millions units of fuel cell vehicles for private and public service		
		Per company produce more than 1,000 fuel cell vehicles	Per company produce more than 10,000 fuel cell vehicles	than 100,000 fuel cell vehicles		
Fuel cell vehicles using	Performance Requirements	Optimizing dynamic system design, the same cost as the electrical vehicles, cold start temperature -30°	Cold start temperature -40°, lower purchasing cost, the same as the hybrid energy vehicles	The same performances of fuel cell vehicles as traditional vehicles, having compared advantages		
hydrogen power	Commercial Vehicles	Durability: 400,000 km Cost≤ 1.5 million CNY	Durability: 800,000 km Cost≤1 million CNY	Durability: 1 million Cost≤ 0.6 million CNY		
	Passenger Vehicles	Life span: 200,000 km Cost ≤ 300,000 CNY	Life span: 250,000 km Cost ≤ 200,000 CNY	Life span: 300,000 km Cost ≤ 180,000 CNY		
Key parts technology		Key auxiliary parts meeting the sta compressor, hydrogen circulatory s	andard like oil-free air system, 70MPa storage bottle	System cost lower than 200CNY/kW		
Hydrogen Infrastruct ure	Hydrogen Supply	Hydrogen production from renewable energy; Hydrogen desperation using low cost and high efficiency approach; Hydrogen production using subsidiary from coke oven gas		Producing hydrogen using renewable energy		
	Hydrogen Transportation	Storage and transportation of high pressure gaseous hydrogen	Transportation of low temperature liquid hydrogen	Storage and transportation of high density organic liquid in the normal pressure		
	Hydrogen Station	More than 100 units	More than 300 units	More than 1,000 units		

© 2016 PIM Ltd. All rights reserved. This report is solely for the use of client personnel. No part of it may be circulated, quoted, or reproduced for distribution outside the client organization without prior written approval from PIM Ltd.

Fuel Cell Vehicles _Technology Routes of Fuel Cell Pack

Fuel Cell Vehicles _ Improvement of Fuel Cell Pack

Performance Improvement

Optimizing membrane electrode structure and the structure of metal and graphite bipolar plate based on existing materials

Life Span Improvement

Optimizing cell pack design and improving consistency of key parts in the cell pack

Environmental Adaption

Research on low temperature performance of key materials and parts

Cost Control

Reducing the quantity of key parts and lowering material cost

Developing key material like compound proton exchange membrane, new catalyst; Developing volume production technology of material and graphite bipolar plate Using key materials and parts with low cost and lowering manufacturing cost

Intensifying verification of new

Optimizing water management

technology of cell pack and

management technology of

intensifying new material

Developing thermal

dynamic system

application

materials and structure

© 2016 PIM Ltd. All rights reserved. This report is solely for the use of client personnel. No part of it may be circulated, quoted, or reproduced for distribution outside the client organization without prior written approval from PIM Ltd.

Using electrode material and

Developing efficient water

management technology

Developing cell pack

technology in cold

temperature

and applying new materials,

cell pack structure

Fuel Cell Vehicles_ Future Forecast

Project Type	Demand for Technical Innovation	Prior Actions	
Technology Foresight	Research on core materials of new fuel cellResearch on fuel cell mechanism	 Dynamic system of fuel cell system and integration technology in commercial vehicles Dynamic system of fuel cell system and integration technology in passenger vehicles 	
Applied Technology	 Technology for improving performance of the fuel cell pack Key auxiliary parts like hydrogen circulation pump, air compressor parts Research on fuel cell system (Engine) Research on life span of fuel cell system(Engine) Dynamic system of fuel cell system and integration technology in commercial vehicles Dynamic system of fuel cell system and integration technology in passenger vehicles 		
Demonstration And Industrialization	 Demonstration run for commercialization of fuel cell vehicles in some cities International technology cooperation for fuel cell vehicles 		
Common Platform	 Test and evaluation platform for dynamic system of fuel cell Innovation platform for hydrogen energy system 		

